Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complexity of Steiner Tree in Split Graphs - Dichotomy Results (1511.01668v3)

Published 5 Nov 2015 in cs.DM

Abstract: Given a connected graph $G$ and a terminal set $R \subseteq V(G)$, {\em Steiner tree} asks for a tree that includes all of $R$ with at most $r$ edges for some integer $r \geq 0$. It is known from [ND12,Garey et. al \cite{steinernpc}] that Steiner tree is NP-complete in general graphs. {\em Split graph} is a graph which can be partitioned into a clique and an independent set. K. White et. al \cite{white} has established that Steiner tree in split graphs is NP-complete. In this paper, we present an interesting dichotomy: we show that Steiner tree on $K_{1,4}$-free split graphs is polynomial-time solvable, whereas, Steiner tree on $K_{1,5}$-free split graphs is NP-complete. We investigate $K_{1,4}$-free and $K_{1,3}$-free (also known as claw-free) split graphs from a structural perspective. Further, using our structural study, we present polynomial-time algorithms for Steiner tree in $K_{1,4}$-free and $K_{1,3}$-free split graphs. Although, polynomial-time solvability of $K_{1,3}$-free split graphs is implied from $K_{1,4}$-free split graphs, we wish to highlight our structural observations on $K_{1,3}$-free split graphs which may be used in other combinatorial problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Madhu Illuri (1 paper)
  2. N. Sadagopan (28 papers)
  3. P. Renjith (9 papers)
Citations (6)