Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime (1511.01192v3)

Published 4 Nov 2015 in math.NA

Abstract: We present several numerical methods and establish their error estimates for the discretization of the nonlinear Dirac equation in the nonrelativistic limit regime, involving a small dimensionless parameter $0<\varepsilon\ll 1$ which is inversely proportional to the speed of light. In this limit regime, the solution is highly oscillatory in time, i.e. there are propagating waves with wavelength $O(\varepsilon2)$ and $O(1)$ in time and space, respectively. We begin with the conservative Crank-Nicolson finite difference (CNFD) method and establish rigorously its error estimate which depends explicitly on the mesh size $h$ and time step $\tau$ as well as the small parameter $0<\varepsilon\le 1$. Based on the error bound, in order to obtain `correct' numerical solutions in the nonrelativistic limit regime, i.e. $0<\varepsilon\ll 1$, the CNFD method requests the $\varepsilon$-scalability: $\tau=O(\varepsilon3)$ and $h=O(\sqrt{\varepsilon})$. Then we propose and analyze two numerical methods for the discretization of the nonlinear Dirac equation by using the Fourier spectral discretization for spatial derivatives combined with the exponential wave integrator and time-splitting technique for temporal derivatives, respectively. Rigorous error bounds for the two numerical methods show that their $\varepsilon$-scalability is improved to $\tau=O(\varepsilon2)$ and $h=O(1)$ when $0<\varepsilon\ll 1$ compared with the CNFD method. Extensive numerical results are reported to confirm our error estimates.

Summary

We haven't generated a summary for this paper yet.