Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extensions for Generalized Current Algebras (1511.00024v1)

Published 30 Oct 2015 in math.RT

Abstract: Given a complex semisimple Lie algebra ${\mathfrak g}$ and a commutative ${\mathbb C}$-algebra $A$, let ${\mathfrak g}[A] = {\mathfrak g} \otimes A$ be the corresponding generalized current algebra. In this paper we explore questions involving the computation and finite-dimensionality of extension groups for finite-dimensional ${\mathfrak g}[A]$-modules. Formulas for computing $\operatorname{Ext}{1}$ and $\operatorname{Ext}{2}$ between simple ${\mathfrak g}[A]$-modules are presented. As an application of these methods and of the use of the first cyclic homology, we completely describe $\operatorname{Ext}{2}_{{\mathfrak g}[t]}(L_{1},L_{2})$ for ${\mathfrak g}=\mathfrak{sl}{2}$ when $L{1}$ and $L_{2}$ are simple ${\mathfrak g}[t]$-modules that are each given by the tensor product of two evaluation modules.

Summary

We haven't generated a summary for this paper yet.