Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating Target Signatures with Diverse Density (1510.09184v1)

Published 30 Oct 2015 in cs.CV

Abstract: Hyperspectral target detection algorithms rely on knowing the desired target signature in advance. However, obtaining an effective target signature can be difficult; signatures obtained from laboratory measurements or hand-spectrometers in the field may not transfer to airborne imagery effectively. One approach to dealing with this difficulty is to learn an effective target signature from training data. An approach for learning target signatures from training data is presented. The proposed approach addresses uncertainty and imprecision in groundtruth in the training data using a multiple instance learning, diverse density (DD) based objective function. After learning the target signature given data with uncertain and imprecise groundtruth, target detection can be applied on test data. Results are shown on simulated and real data.

Summary

We haven't generated a summary for this paper yet.