Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rigidity hierarchy in random point fields: random polynomials and determinantal processes (1510.08814v2)

Published 29 Oct 2015 in math.PR, math-ph, and math.MP

Abstract: In certain point processes, the configuration of points outside a bounded domain determines, with probability 1, certain statistical features of the points within the domain. This notion, called rigidity, was introduced in a work of Ghosh and Peres. In this paper, rigidity and the related notion of tolerance are examined systematically and point processes with rigidity of various degrees are introduced. Natural classes of point processes such as determinantal point processes, zero sets of Gaussian entire functions and perturbed lattices are examined from the point of view of rigidity, and general conditions are provided for them to exhibit specified nature of spatially rigid behaviour. In particular, we examine the rigidity of determinantal point processes in terms of their kernel, and demonstrate that a necessary condition for determinantal processes to exhibit rigidity is that their kernel must be a projection. We introduce a one parameter family of point processes which exhibit arbitrarily high levels of rigidity (depending on the choice of parameter value), answering a natural question on point processes with higher levels of rigidity (beyond the known examples of rigidity of local mass and center of mass). Our one parameter family is also related to a natural extension of the standard planar Gaussian analytic function process and their zero sets.

Summary

We haven't generated a summary for this paper yet.