Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Invariant random subgroups of groups acting on hyperbolic spaces (1510.07710v4)

Published 26 Oct 2015 in math.GR and math.DS

Abstract: Suppose that a group $G$ acts non-elementarily on a hyperbolic space $S$ and does not fix any point of $\partial S$. A subgroup $H\le G$ is said to be geometrically dense in $G$ if the limit sets of $H$ and $G$ coincide and $H$ does not fix any point of $\partial S$. We prove that every invariant random subgroup of $G$ is either geometrically dense or contained in the elliptic radical (i.e., the maximal normal elliptic subgroup of $G$). In particular, every ergodic measure preserving action of an acylindrically hyperbolic group on a Borel probability space $(X,\mu)$ either has finite stabilizers $\mu$-almost surely or otherwise the stabilizers are very large (in particular, acylindrically hyperbolic) $\mu$-almost surely.

Summary

We haven't generated a summary for this paper yet.