Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The existence of Zariski dense orbits for polynomial endomorphisms of the affine plane (1510.07684v3)

Published 26 Oct 2015 in math.DS and math.AG

Abstract: In this paper we prove the following theorem. Let $f:\mathbb{A}2\rightarrow \mathbb{A}2$ be a dominate polynomial endomorphisms defined over an algebraically closed field $k$ of characteristic $0$. If there are no nonconstant rational function $g:\mathbb{A}2-rightarrow \mathbb{P}1$ satisfying $g\circ f=g$, then there exists a point $p\in \mathbb{A}2(k)$ whose orbit under $f$ is Zariski dense in $\mathbb{A}2$. This result gives us a positive answer to a conjecture of Amerik, Bogomolov and Rovinsky ( and Zhang) for polynomial endomorphisms on the affine plane.

Summary

We haven't generated a summary for this paper yet.