Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blow-up of weak solutions to a chemotaxis system under influence of an external chemoattractant (1510.07173v1)

Published 24 Oct 2015 in math.AP

Abstract: We study nonnnegative radially symmetric solutions of the parabolic-elliptic Keller-Segel whole space system \begin{align*} \left{\begin{array}{c@{\,}l@{\quad}l@{\,}c} u_{t}&=\Delta u-\nabla!\cdot(u\nabla v),\ &x\in\mathbb{R}n,& t>0,\ 0 &=\Delta v+u+f(x),\ &x\in\mathbb{R}n,& t>0,\ u(x,0)&=u_{0}(x),\ &x\in\mathbb{R}n,& \end{array}\right. \end{align*} with prototypical external signal production \begin{align*} f(x):=\begin{cases} f_0\vert x\vert{-\alpha},&\text{ if }\vert x\vert \leq R-\rho,\ 0,&\text{ if } \vert x\vert\geq R+\rho,\ \end{cases} \end{align*} for $R\in(0,1)$ and $\rho\in\left(0,\frac{R}{2}\right)$, which is still integrable but not of class $\text{L}{\frac{n}{2}+\delta_0}(\mathbb{R}n)$ for some $\delta_0\in[0,1)$. For corresponding parabolic-parabolic Neumann-type boundary-value problems in bounded domains $\Omega$, where $f\in\text{L}{\frac{n}{2}+\delta_0}(\Omega)\cap C{\alpha}(\Omega)$ for some $\delta_0\in(0,1)$ and $\alpha\in(0,1)$, it is known that the system does not emit blow-up solutions if the quantities $|u_0|{\text{L}{\frac{n}{2}+\delta_0}(\Omega)}, |f|{\text{L}{\frac{n}{2}+\delta_0}(\Omega)}$ and $|v_0|_{\text{L}{\theta}(\Omega)}$, for some $\theta>n$, are all bounded by some $\varepsilon>0$ small enough. We will show that whenever $f_0>\frac{2n}{\alpha}(n-2)(n-\alpha)$ and $u_0\equiv c_0>0$ in $\overline{B_1(0)}$, a measure-valued global-in-time weak solution to the system above can be constructed which blows up immediately. Since these conditions are independent of $R\in(0,1)$ and $c_0>0$, we will thus prove the criticality of $\delta_0=0$ for the existence of global bounded solutions under a smallness conditions as described above.

Summary

We haven't generated a summary for this paper yet.