Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference with Dyadic Data: Asymptotic Behavior of the Dyadic-Robust t-Statistic (1510.07074v6)

Published 23 Oct 2015 in math.ST and stat.TH

Abstract: This paper is concerned with inference in the linear model with dyadic data. Dyadic data is data that is indexed by pairs of "units", for example trade data between pairs of countries. Because of the potential for observations with a unit in common to be correlated, standard inference procedures may not perform as expected. We establish a range of conditions under which a t-statistic with the dyadic-robust variance estimator of Fafchamps and Gubert (2007) is asymptotically normal. Using our theoretical results as a guide, we perform a simulation exercise to study the validity of the normal approximation, as well as the performance of a novel finite-sample correction. We conclude with guidelines for applied researchers wishing to use the dyadic-robust estimator for inference.

Summary

We haven't generated a summary for this paper yet.