Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random-Cluster Dynamics in $\mathbb{Z}^2$ (1510.06762v2)

Published 22 Oct 2015 in cs.DM, math-ph, math.MP, and math.PR

Abstract: The random-cluster model has been widely studied as a unifying framework for random graphs, spin systems and electrical networks, but its dynamics have so far largely resisted analysis. In this paper we analyze the Glauber dynamics of the random-cluster model in the canonical case where the underlying graph is an $n \times n$ box in the Cartesian lattice $\mathbb{Z}2$. Our main result is a $O(n2\log n)$ upper bound for the mixing time at all values of the model parameter $p$ except the critical point $p=p_c(q)$, and for all values of the second model parameter $q\ge 1$. We also provide a matching lower bound proving that our result is tight. Our analysis takes as its starting point the recent breakthrough by Beffara and Duminil-Copin on the location of the random-cluster phase transition in $\mathbb{Z}2$. It is reminiscent of similar results for spin systems such as the Ising and Potts models, but requires the reworking of several standard tools in the context of the random-cluster model, which is not a spin system in the usual sense.

Citations (26)

Summary

We haven't generated a summary for this paper yet.