Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained Systems of Conservation Laws: A Geometric Theory (1510.06677v3)

Published 22 Oct 2015 in math-ph, math.AP, and math.MP

Abstract: We address the Riemann and Cauchy problems for systems of $n$ conservation laws in $m$ unknowns which are subject to $m-n$ constraints ($m\geq n$). Such constrained systems generalize systems of conservation laws in standard form to include various examples of conservation laws in Physics and Engineering beyond gas dynamics, e.g., multi-phase flow in porous media. We prove local well-posedness of the Riemann problem and global existence of the Cauchy problem for initial data with sufficiently small total variation, in one spatial dimension. The key to our existence theory is to generalize the $m\times n$ systems of constrained conservation laws to $n\times n$ systems of conservation laws with states taking values in an $n$-dimensional manifold and to extend Lax's theory for local existence as well as Glimm's random choice method to our geometric framework. Our resulting existence theory allows for the accumulation function to be non-invertible across hypersurfaces.

Summary

We haven't generated a summary for this paper yet.