Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 'Gibbs-Newton' Technique for Enhanced Inference of Multivariate Polya Parameters and Topic Models (1510.06646v2)

Published 22 Oct 2015 in cs.LG, cs.CL, and stat.ML

Abstract: Hyper-parameters play a major role in the learning and inference process of latent Dirichlet allocation (LDA). In order to begin the LDA latent variables learning process, these hyper-parameters values need to be pre-determined. We propose an extension for LDA that we call 'Latent Dirichlet allocation Gibbs Newton' (LDA-GN), which places non-informative priors over these hyper-parameters and uses Gibbs sampling to learn appropriate values for them. At the heart of LDA-GN is our proposed 'Gibbs-Newton' algorithm, which is a new technique for learning the parameters of multivariate Polya distributions. We report Gibbs-Newton performance results compared with two prominent existing approaches to the latter task: Minka's fixed-point iteration method and the Moments method. We then evaluate LDA-GN in two ways: (i) by comparing it with standard LDA in terms of the ability of the resulting topic models to generalize to unseen documents; (ii) by comparing it with standard LDA in its performance on a binary classification task.

Summary

We haven't generated a summary for this paper yet.