Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows (1510.06592v1)
Abstract: We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body-force. This system admits vertically invariant solutions that satisfy the 2D Navier-Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations: the flow becomes 2D in the long-time limit. These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone-anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.