2000 character limit reached
Sums of the triple divisor function over values of a ternary quadratic form (1510.06170v1)
Published 21 Oct 2015 in math.NT
Abstract: Let $\tau_3(n)$ be the triple divisor function which is the number of solutions of the equation $d_1d_2d_3=n$ in natural numbers. It is shown that $$ \sum_{1\leq n_1,n_2,n_3\leq \sqrt{x}}\tau_3(n_12+n_22+n_32)=c_1x{\frac{3}{2}}(\log x)2+ c_2x{\frac{3}{2}}\log x +c_3x{\frac{3}{2}} +O_{\varepsilon}(x{\frac{11}{8}+\varepsilon}) $$ for some constants $c_1$, $c_2$ and $c_3$.