Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimensionality Reduction for Binary Data through the Projection of Natural Parameters (1510.06112v1)

Published 21 Oct 2015 in stat.ML and stat.ME

Abstract: Principal component analysis (PCA) for binary data, known as logistic PCA, has become a popular alternative to dimensionality reduction of binary data. It is motivated as an extension of ordinary PCA by means of a matrix factorization, akin to the singular value decomposition, that maximizes the Bernoulli log-likelihood. We propose a new formulation of logistic PCA which extends Pearson's formulation of a low dimensional data representation with minimum error to binary data. Our formulation does not require a matrix factorization, as previous methods do, but instead looks for projections of the natural parameters from the saturated model. Due to this difference, the number of parameters does not grow with the number of observations and the principal component scores on new data can be computed with simple matrix multiplication. We derive explicit solutions for data matrices of special structure and provide computationally efficient algorithms for solving for the principal component loadings. Through simulation experiments and an analysis of medical diagnoses data, we compare our formulation of logistic PCA to the previous formulation as well as ordinary PCA to demonstrate its benefits.

Citations (111)

Summary

We haven't generated a summary for this paper yet.