Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypergraph conditions for the solvability of the ergodic equation for zero-sum games (1510.05396v1)

Published 19 Oct 2015 in math.OC

Abstract: The ergodic equation is a basic tool in the study of mean-payoff stochastic games. Its solvability entails that the mean payoff is independent of the initial state. Moreover, optimal stationary strategies are readily obtained from its solution. In this paper, we give a general sufficient condition for the solvability of the ergodic equation, for a game with finite state space but arbitrary action spaces. This condition involves a pair of directed hypergraphs depending only on the ``growth at infinity'' of the Shapley operator of the game. This refines a recent result of the authors which only applied to games with bounded payments, as well as earlier nonlinear fixed point results for order preserving maps, involving graph conditions.

Summary

We haven't generated a summary for this paper yet.