Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rational Points on Erdos-Selfridge Superelliptic Curves (1510.05376v1)

Published 19 Oct 2015 in math.NT

Abstract: Given $k \geq 2$, we show that there are at most finitely many rational numbers $x$ and $y \neq 0$ and integers $\ell \geq 2$ (with $(k,\ell) \neq (2,2)$) for which $$ x (x+1) \cdots (x+k-1) = y\ell. $$ In particular, if we assume that $\ell$ is prime, then all such triples $(x,y,\ell)$ satisfy either $y=0$ or $\log \ell < 3k$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.