Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A normal form for 1-infinite type hypersurfaces in $\mathbb C^2$. I. Formal Theory (1510.05335v2)

Published 19 Oct 2015 in math.CV

Abstract: In this paper, we study the real hypersurfaces $M$ in $\mathbb C2$ at points $p\in M$ of infinite type. The degeneracy of $M$ at $p$ is assumed to be the least possible, namely such that the Levi form vanishes to first order in the CR transversal direction. A new phenomenon, compared to known normal forms in other cases, is the presence of resonances as roots of an universal polynomial in the $7$-jet of the defining function of $M$. The main result is a complete (formal) normal form at points $p$ with no resonances. Remarkably, our normal form at such infinite type points resembles closely the Chern-Moser normal form at Levi-nondegenerate points. For a fixed hypersurface, its normal forms are parametrized by $S1\times \mathbb R*$, and as a corollary we find that the automorphisms in the stability group of $M$ at $p$ without resonances are determined by their $1$-jets at $p$. In the last section, as a contrast, we also give examples of hypersurfaces with arbitrarily high resonances that possess families of distinct automorphisms whose jets agree up to the resonant order.

Summary

We haven't generated a summary for this paper yet.