Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of optimal ternary cyclic codes and their duals (1510.05048v1)

Published 16 Oct 2015 in cs.IT and math.IT

Abstract: Cyclic codes are a subclass of linear codes and have applications in consumer electronics, data storage systems, and communication systems as they have efficient encoding and decoding algorithms. Let $m=2\ell+1$ for an integer $\ell\geq 1$ and $\pi$ be a generator of $\gf(3m)*$. In this paper, a class of cyclic codes $\C_{(u,v)}$ over $\gf(3)$ with two nonzeros $\pi{u}$ and $\pi{v}$ is studied, where $u=(3m+1)/2$, and $v=2\cdot 3{\ell}+1$ is the ternary Welch-type exponent. Based on a result on the non-existence of solutions to certain equation over $\gf(3m)$, the cyclic code $\C_{(u,v)}$ is shown to have minimal distance four, which is the best minimal distance for any linear code over $\gf(3)$ with length $3m-1$ and dimension $3m-1-2m$ according to the Sphere Packing bound. The duals of this class of cyclic codes are also studied.

Citations (36)

Summary

We haven't generated a summary for this paper yet.