Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Localized Boundary-Domain Singular Integral Equations of Dirichlet Problem for Self-adjoint Second Order Strongly Elliptic PDE Systems (1510.04974v2)

Published 16 Oct 2015 in math.AP

Abstract: The paper deals with the three-dimensional Dirichlet boundary value problem (BVP) for a second order strongly elliptic self-adjoint system of partial differential equations in the divergence form with variable coefficients and develops the integral potential method based on a localized parametrix. Using Green's representation formula and properties of the localized layer and volume potentials, we reduce the Dirichlet BVP to a system of localized boundary-domain integral equations (LBDIEs). The equivalence between the Dirichlet BVP and the corresponding LBDIE system is studied. We establish that the obtained localized boundary-domain integral operator belongs to the Boutet de Monvel algebra. With the help of the Wiener-Hopf factorization method we investigate corresponding Fredholm properties and prove invertibility of the localized operator in appropriate Sobolev (Bessel potential) spaces.

Summary

We haven't generated a summary for this paper yet.