Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history (1510.04839v1)

Published 16 Oct 2015 in cs.SI and q-bio.PE

Abstract: Spatial spread of infectious diseases among populations via the mobility of humans is highly stochastic and heterogeneous. Accurate forecast/mining of the spread process is often hard to be achieved by using statistical or mechanical models. Here we propose a new reverse problem, which aims to identify the stochastically spatial spread process itself from observable information regarding the arrival history of infectious cases in each subpopulation. We solved the problem by developing an efficient optimization algorithm based on dynamical programming, which comprises three procedures: i, anatomizing the whole spread process among all subpopulations into disjoint componential patches; ii, inferring the most probable invasion pathways underlying each patch via maximum likelihood estimation; iii, recovering the whole process by assembling the invasion pathways in each patch iteratively, without burdens in parameter calibrations and computer simulations. Based on the entropy theory, we introduced an identifiability measure to assess the difficulty level that an invasion pathway can be identified. Results on both artificial and empirical metapopulation networks show the robust performance in identifying actual invasion pathways driving pandemic spread.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jian-Bo Wang (4 papers)
  2. Lin Wang (403 papers)
  3. Xiang Li (1002 papers)
Citations (44)