Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Markov decision processes with policy iteration (1510.04454v1)

Published 15 Oct 2015 in cs.LG

Abstract: The online Markov decision process (MDP) is a generalization of the classical Markov decision process that incorporates changing reward functions. In this paper, we propose practical online MDP algorithms with policy iteration and theoretically establish a sublinear regret bound. A notable advantage of the proposed algorithm is that it can be easily combined with function approximation, and thus large and possibly continuous state spaces can be efficiently handled. Through experiments, we demonstrate the usefulness of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.