Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Omnibus Nonparametric Test of Equality in Distribution for Unknown Functions (1510.04195v3)

Published 14 Oct 2015 in math.ST, stat.ML, and stat.TH

Abstract: We present a novel family of nonparametric omnibus tests of the hypothesis that two unknown but estimable functions are equal in distribution when applied to the observed data structure. We developed these tests, which represent a generalization of the maximum mean discrepancy tests described in Gretton et al. [2006], using recent developments from the higher-order pathwise differentiability literature. Despite their complex derivation, the associated test statistics can be expressed rather simply as U-statistics. We study the asymptotic behavior of the proposed tests under the null hypothesis and under both fixed and local alternatives. We provide examples to which our tests can be applied and show that they perform well in a simulation study. As an important special case, our proposed tests can be used to determine whether an unknown function, such as the conditional average treatment effect, is equal to zero almost surely.

Citations (34)

Summary

We haven't generated a summary for this paper yet.