Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Surface Approximation via Asymptotic Optimal Geometric Partition (1510.03935v2)

Published 14 Oct 2015 in cs.GR

Abstract: In this paper, we present a surface remeshing method with high approximation quality based on Principal Component Analysis. Given a triangular mesh and a user assigned polygon/vertex budget, traditional methods usually require the extra curvature metric field for the desired anisotropy to best approximate the surface, even though the estimated curvature metric is known to be imperfect and already self-contained in the surface. In our approach, this anisotropic control is achieved through the optimal geometry partition without this explicit metric field. The minimization of our proposed partition energy has the following properties: Firstly, on a C2 surface, it is theoretically guaranteed to have the optimal aspect ratio and cluster size as specified in approximation theory for L1 piecewise linear approximation. Secondly, it captures sharp features on practical models without any pre-tagging. We develop an effective merging-swapping framework to seek the optimal partition and construct polygonal/triangular mesh afterwards. The effectiveness and efficiency of our method are demonstrated through the comparison with other state-of-the-art remeshing methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.