Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Memory for Neural Turing Machines (1510.03931v3)

Published 14 Oct 2015 in cs.AI and cs.NE

Abstract: Neural Turing Machines (NTM) contain memory component that simulates "working memory" in the brain to store and retrieve information to ease simple algorithms learning. So far, only linearly organized memory is proposed, and during experiments, we observed that the model does not always converge, and overfits easily when handling certain tasks. We think memory component is key to some faulty behaviors of NTM, and better organization of memory component could help fight those problems. In this paper, we propose several different structures of memory for NTM, and we proved in experiments that two of our proposed structured-memory NTMs could lead to better convergence, in term of speed and prediction accuracy on copy task and associative recall task as in (Graves et al. 2014).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Wei Zhang (1489 papers)
  2. Yang Yu (385 papers)
  3. Bowen Zhou (141 papers)
Citations (13)