Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Choosing the right home location definition method for the given dataset (1510.03715v1)

Published 13 Oct 2015 in cs.SI

Abstract: Ever since first mobile phones equipped with GPS came to the market, knowing the exact user location has become a holy grail of almost every service that lives in the digital world. Starting with the idea of location based services, nowadays it is not only important to know where users are in real time, but also to be able predict where they will be in future. Moreover, it is not enough to know user location in form of latitude longitude coordinates provided by GPS devices, but also to give a place its meaning (i.e., semantically label it), in particular detecting the most probable home location for the given user. The aim of this paper is to provide novel insights on differences among the ways how different types of human digital trails represent the actual mobility patterns and therefore the differences between the approaches interpreting those trails for inferring said patterns. Namely, with the emergence of different digital sources that provide information about user mobility, it is of vital importance to fully understand that not all of them capture exactly the same picture. With that being said, in this paper we start from an example showing how human mobility patterns described by means of radius of gyration are different for Flickr social network and dataset of bank card transactions. Rather than capturing human movements closer to their homes, Flickr more often reveals people travel mode. Consequently, home location inferring methods used in both cases cannot be the same. We consider several methods for home location definition known from the literature and demonstrate that although for bank card transactions they provide highly consistent results, home location definition detection methods applied to Flickr dataset happen to be way more sensitive to the method selected, stressing the paramount importance of adjusting the method to the specific dataset being used.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Iva Bojic (12 papers)
  2. Emanuele Massaro (16 papers)
  3. Alexander Belyi (8 papers)
  4. Stanislav Sobolevsky (45 papers)
  5. Carlo Ratti (88 papers)
Citations (55)

Summary

We haven't generated a summary for this paper yet.