Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data (1510.03679v3)

Published 13 Oct 2015 in math.ST and stat.TH

Abstract: The asymptotic normality of the maximum likelihood estimator (MLE) under regularity conditions is a cornerstone of statistical theory. In this paper, we give explicit upper bounds on the distributional distance between the distribution of the MLE of a vector parameter, and the multivariate normal distribution. We work with possibly high-dimensional, independent but not necessarily identically distributed random vectors. In addition, we obtain explicit upper bounds even in cases where the MLE cannot be expressed analytically.

Summary

We haven't generated a summary for this paper yet.