End-to-End Error-Correcting Codes on Networks with Worst-Case Symbol Errors (1510.03060v1)
Abstract: The problem of coding for networks experiencing worst-case symbol errors is considered. We argue that this is a reasonable model for highly dynamic wireless network transmissions. We demonstrate that in this setup prior network error-correcting schemes can be arbitrarily far from achieving the optimal network throughput. A new transform metric for errors under the considered model is proposed. Using this metric, we replicate many of the classical results from coding theory. Specifically, we prove new Hamming-type, Plotkin-type, and Elias-Bassalygo-type upper bounds on the network capacity. A commensurate lower bound is shown based on Gilbert-Varshamov-type codes for error-correction. The GV codes used to attain the lower bound can be non-coherent, that is, they do not require prior knowledge of the network topology. We also propose a computationally-efficient concatenation scheme. The rate achieved by our concatenated codes is characterized by a Zyablov-type lower bound. We provide a generalized minimum-distance decoding algorithm which decodes up to half the minimum distance of the concatenated codes. The end-to-end nature of our design enables our codes to be overlaid on the classical distributed random linear network codes [1]. Furthermore, the potentially intensive computation at internal nodes for the link-by-link error-correction is un-necessary based on our design.