Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ParallelPC: an R package for efficient constraint based causal exploration (1510.03042v1)

Published 11 Oct 2015 in cs.AI and stat.ML

Abstract: Discovering causal relationships from data is the ultimate goal of many research areas. Constraint based causal exploration algorithms, such as PC, FCI, RFCI, PC-simple, IDA and Joint-IDA have achieved significant progress and have many applications. A common problem with these methods is the high computational complexity, which hinders their applications in real world high dimensional datasets, e.g gene expression datasets. In this paper, we present an R package, ParallelPC, that includes the parallelised versions of these causal exploration algorithms. The parallelised algorithms help speed up the procedure of experimenting big datasets and reduce the memory used when running the algorithms. The package is not only suitable for super-computers or clusters, but also convenient for researchers using personal computers with multi core CPUs. Our experiment results on real world datasets show that using the parallelised algorithms it is now practical to explore causal relationships in high dimensional datasets with thousands of variables in a single multicore computer. ParallelPC is available in CRAN repository at https://cran.rproject.org/web/packages/ParallelPC/index.html.

Citations (9)

Summary

We haven't generated a summary for this paper yet.