Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Avoiding fractional powers over the natural numbers (1510.02807v2)

Published 9 Oct 2015 in math.CO and cs.DM

Abstract: We study the lexicographically least infinite $a/b$-power-free word on the alphabet of non-negative integers. Frequently this word is a fixed point of a uniform morphism, or closely related to one. For example, the lexicographically least $7/4$-power-free word is a fixed point of a $50847$-uniform morphism. We identify the structure of the lexicographically least $a/b$-power-free word for three infinite families of rationals $a/b$ as well many "sporadic" rationals that do not seem to belong to general families. To accomplish this, we develop an automated procedure for proving $a/b$-power-freeness for morphisms of a certain form, both for explicit and symbolic rational numbers $a/b$. Finally, we establish a connection to words on a finite alphabet. Namely, the lexicographically least $27/23$-power-free word is in fact a word on the finite alphabet ${0, 1, 2}$, and its sequence of letters is $353$-automatic.

Citations (4)

Summary

We haven't generated a summary for this paper yet.