Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Positive Operator Valued Measures and Feller Markov Kernels (1510.02655v2)

Published 9 Oct 2015 in math.FA

Abstract: A Positive Operator Valued Measure (POVM) is a map $F:\mathcal{B}(X)\to\mathcal{L}_s+(\mathcal{H})$ from the Borel $\sigma$-algebra of a topological space $X$ to the space of positive self-adjoint operators on a Hilbert space $\mathcal{H}$. We assume $X$ to be Hausdorff, locally compact and second countable and prove that a POVM $F$ is commutative if and only if it is the smearing of a spectral measure $E$ by means of a Feller Markov kernel. Moreover, we prove that the smearing can be realized by means of a strong Feller Markov kernel if and only if $F$ is uniformly continuous. Finally, we prove that a POVM which is norm bounded by a finite measure $\nu$ admits a strong Feller Markov kernel. That provides a characterization of the smearing which connects a commutative POVM $F$ to a spectral measure $E$ and is relevant both from the mathematical and the physical viewpoint since smearings of spectral measures form a large and very relevant subclass of POVMs: they are paradigmatic for the modeling of certain standard forms of noise in quantum measurements, they provide optimal approximators as marginals in joint measurements of incompatible observables \cite{Busch}, they are important for a range of quantum information processing protocols, where classical post-processing plays a role \cite{Heinosaari}. The mathematical and physical relevance of the results is discussed and particular emphasis is given to the connections between the Markov kernel and the imprecision of the measurement process.

Summary

We haven't generated a summary for this paper yet.