Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Literature Review Of Attribute Level And Structure Level Data Linkage Techniques (1510.02395v1)

Published 7 Oct 2015 in cs.DB

Abstract: Data Linkage is an important step that can provide valuable insights for evidence-based decision making, especially for crucial events. Performing sensible queries across heterogeneous databases containing millions of records is a complex task that requires a complete understanding of each contributing databases schema to define the structure of its information. The key aim is to approximate the structure and content of the induced data into a concise synopsis in order to extract and link meaningful data-driven facts. We identify such problems as four major research issues in Data Linkage: associated costs in pair-wise matching, record matching overheads, semantic flow of information restrictions, and single order classification limitations. In this paper, we give a literature review of research in Data Linkage. The purpose for this review is to establish a basic understanding of Data Linkage, and to discuss the background in the Data Linkage research domain. Particularly, we focus on the literature related to the recent advancements in Approximate Matching algorithms at Attribute Level and Structure Level. Their efficiency, functionality and limitations are critically analysed and open-ended problems have been exposed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (13)

Summary

We haven't generated a summary for this paper yet.