Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Hardest Problem Formulations for the 0/1 Lasserre Hierarchy (1510.01891v1)

Published 7 Oct 2015 in cs.CC and cs.DS

Abstract: The Lasserre/Sum-of-Squares (SoS) hierarchy is a systematic procedure for constructing a sequence of increasingly tight semidefinite relaxations. It is known that the hierarchy converges to the 0/1 polytope in n levels and captures the convex relaxations used in the best available approximation algorithms for a wide variety of optimization problems. In this paper we characterize the set of 0/1 integer linear problems and unconstrained 0/1 polynomial optimization problems that can still have an integrality gap at level n-1. These problems are the hardest for the Lasserre hierarchy in this sense.

Citations (28)

Summary

We haven't generated a summary for this paper yet.