Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimating the Number Of Roots of Trinomials over Finite Fields (1510.01758v4)

Published 6 Oct 2015 in math.NT and math.AG

Abstract: We show that univariate trinomials $xn + axs + b \in \mathbb{F}_q[x]$ can have at most $\delta \Big\lfloor \frac{1}{2} +\sqrt{\frac{q-1}{\delta}} \Big\rfloor$ distinct roots in $\mathbb{F}_q$, where $\delta = \gcd(n, s, q - 1)$. We also derive explicit trinomials having $\sqrt{q}$ roots in $\mathbb{F}_q$ when $q$ is square and $\delta=1$, thus showing that our bound is tight for an infinite family of finite fields and trinomials. Furthermore, we present the results of a large-scale computation which suggest that an $O(\delta \log q)$ upper bound may be possible for the special case where $q$ is prime. Finally, we give a conjecture (along with some accompanying computational and theoretical support) that, if true, would imply such a bound.

Summary

We haven't generated a summary for this paper yet.