Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic subGradient Methods with Linear Convergence for Polyhedral Convex Optimization (1510.01444v5)

Published 6 Oct 2015 in cs.LG and math.OC

Abstract: In this paper, we show that simple {Stochastic} subGradient Decent methods with multiple Restarting, named {\bf RSGD}, can achieve a \textit{linear convergence rate} for a class of non-smooth and non-strongly convex optimization problems where the epigraph of the objective function is a polyhedron, to which we refer as {\bf polyhedral convex optimization}. Its applications in machine learning include $\ell_1$ constrained or regularized piecewise linear loss minimization and submodular function minimization. To the best of our knowledge, this is the first result on the linear convergence rate of stochastic subgradient methods for non-smooth and non-strongly convex optimization problems.

Summary

We haven't generated a summary for this paper yet.