Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp hessian integrability estimates for nonlinear elliptic equations: an asymptotic approach (1510.01284v1)

Published 5 Oct 2015 in math.AP

Abstract: We establish sharp $W{2,p}$ regularity estimates for viscosity solutions of fully nonlinear elliptic equations under minimal, asymptotic assumptions on the governing operator $F$. By means of geometric tangential methods, we show that if the {\it recession} of the operator $F$ -- formally given by $F*(M):=\infty{-1} F(\infty M)$ -- is convex, then any viscosity solution to the original equation $F(D2u) = f(x)$ is locally of class $W{2,p}$, provided $f\in Lp$, $p>d$, with appropriate universal estimates. Our result extends to operators with variable coefficients and in this setting they are new even under convexity of the frozen coefficient operator, $M\mapsto F(x_0, M)$, as oscillation is measured only at the recession level. The methods further yield BMO regularity of the hessian, provided the source lies in that space. As a final application, we establish the density of $W{2,p}$ solutions within the class of all continuous viscosity solutions, for generic fully nonlinear operators $F$. This result gives an alternative tool for treating common issues often faced in the theory of viscosity solutions.

Summary

We haven't generated a summary for this paper yet.