Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Centrality metrics and localization in core-periphery networks (1510.01116v2)

Published 5 Oct 2015 in cs.SI and physics.soc-ph

Abstract: Two concepts of centrality have been defined in complex networks. The first considers the centrality of a node and many different metrics for it has been defined (e.g. eigenvector centrality, PageRank, non-backtracking centrality, etc). The second is related to a large scale organization of the network, the core-periphery structure, composed by a dense core plus an outlying and loosely-connected periphery. In this paper we investigate the relation between these two concepts. We consider networks generated via the Stochastic Block Model, or its degree corrected version, with a strong core-periphery structure and we investigate the centrality properties of the core nodes and the ability of several centrality metrics to identify them. We find that the three measures with the best performance are marginals obtained with belief propagation, PageRank, and degree centrality, while non-backtracking and eigenvector centrality (or MINRES}, showed to be equivalent to the latter in the large network limit) perform worse in the investigated networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Paolo Barucca (44 papers)
  2. Daniele Tantari (43 papers)
  3. Fabrizio Lillo (94 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.