Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolving Twitter: an experimental analysis of graph properties of the social graph (1510.01091v1)

Published 5 Oct 2015 in cs.SI and physics.soc-ph

Abstract: Twitter is one of the most prominent Online Social Networks. It covers a significant part of the online worldwide population~20% and has impressive growth rates. The social graph of Twitter has been the subject of numerous studies since it can reveal the intrinsic properties of large and complex online communities. Despite the plethora of these studies, there is a limited cover on the properties of the social graph while they evolve over time. Moreover, due to the extreme size of this social network (millions of nodes, billions of edges), there is a small subset of possible graph properties that can be efficiently measured in a reasonable timescale. In this paper we propose a sampling framework that allows the estimation of graph properties on large social networks. We apply this framework to a subset of Twitter's social network that has 13.2 million users, 8.3 billion edges and covers the complete Twitter timeline (from April 2006 to January 2015). We derive estimation on the time evolution of 24 graph properties many of which have never been measured on large social networks. We further discuss how these estimations shed more light on the inner structure and growth dynamics of Twitter's social network.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Despoina Antonakaki (8 papers)
  2. Sotiris Ioannidis (41 papers)
  3. Paraskevi Fragopoulou (5 papers)
Citations (13)