Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quadratic Optimization with Orthogonality Constraints: Explicit Lojasiewicz Exponent and Linear Convergence of Line-Search Methods (1510.01025v1)

Published 5 Oct 2015 in math.OC, cs.LG, cs.NA, and math.NA

Abstract: A fundamental class of matrix optimization problems that arise in many areas of science and engineering is that of quadratic optimization with orthogonality constraints. Such problems can be solved using line-search methods on the Stiefel manifold, which are known to converge globally under mild conditions. To determine the convergence rate of these methods, we give an explicit estimate of the exponent in a Lojasiewicz inequality for the (non-convex) set of critical points of the aforementioned class of problems. By combining such an estimate with known arguments, we are able to establish the linear convergence of a large class of line-search methods. A key step in our proof is to establish a local error bound for the set of critical points, which may be of independent interest.

Citations (49)

Summary

We haven't generated a summary for this paper yet.