Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L^p$ Boundedness of rough Bi-parameter Fourier Integral Operators (1510.00986v1)

Published 4 Oct 2015 in math.AP and math.CA

Abstract: In this paper, we will investigate the boundedness of the bi-parameter Fourier integral operators (or FIOs for short) of the following form: $$T(f)(x)=\frac{1}{(2\pi){2n}}\int_{\mathbb{R}{2n}}e{i\varphi(x,\xi,\eta)}\cdot a(x,\xi,\eta)\cdot\widehat{f}(\xi,\eta)d\xi d\eta,$$ where for $x=(x_1,x_2)\in \mathbb{R}{n}\times \mathbb{R}{n}$ and $\xi,\eta \in \mathbb{R}{n}\setminus{0}$, the amplitude $a(x,\xi,\eta)\in L\infty BSm_\rho$ and the phase function is of the form $ \varphi(x,\xi,\eta)=\varphi_1(x_1,\xi)+\varphi_2(x_2,\eta)$ with $\quad \varphi_1,\varphi_2 \in L\infty \Phi2 (\mathbb{R}{n}\times\mathbb{R}{n}\setminus{0})$ and $\varphi(x, \xi, \eta)$ satisfies a certain rough non-degeneracy condition. The study of these operators are motivated by the $Lp$ estimates for one-parameter FIOs and bi-parameter Fourier multipliers and pseudo-differential operators. We will first define the bi-parameter FIOs and then study the $Lp$ boundedness of such operators when their phase functions have compact support in frequency variables with certain necessary non-degeneracy conditions. We will then establish the $Lp$ boundedness of the more general FIOs with amplitude $a(x,\xi,\eta)\in L\infty BSm_\rho$ and non-smooth phase function $\varphi(x,\xi,\eta)$ on $x$ satisfying a rough non-degeneracy condition.

Summary

We haven't generated a summary for this paper yet.