Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Geometric View of Posterior Approximation (1510.00861v1)

Published 3 Oct 2015 in stat.CO

Abstract: Although Bayesian methods are robust and principled, their application in practice could be limited since they typically rely on computationally intensive Markov Chain Monte Carlo algorithms for their implementation. One possible solution is to find a fast approximation of posterior distribution and use it for statistical inference. For commonly used approximation methods, such as Laplace and variational free energy, the objective is mainly defined in terms of computational convenience as opposed to a true distance measure between the target and approximating distributions. In this paper, we provide a geometric view of posterior approximation based on a valid distance measure derived from ambient Fisher geometry. Our proposed framework is easily generalizable and can inspire a new class of methods for approximate Bayesian inference.

Summary

We haven't generated a summary for this paper yet.