Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seminormed $\ast$-subalgebras of $\ell^{\infty}(X)$ (1510.00846v3)

Published 3 Oct 2015 in math.FA

Abstract: Arbitrary representations of a commutative unital ($\ast$-) $\mathbb{F}$-algebra $A$ as a subalgeba of $\mathbb{F}X$ are considered, where $\mathbb{F}=\mathbb{C}$ or $\mathbb{R}$ and $X\neq\emptyset$. The Gelfand spectrum of $A$ is explained as a topological extension of $X$ where a seminorm on the image of $A$ in $\mathbb{F}X$ is present. It is shown that among all seminormes, the $\sup$-norm is of special importance which reduces $\mathbb{F}X$ to $\ell{\infty}(X)$. The Banach subalgebra of $\ell{\infty}(X)$ of all $\Sigma$-measurable bounded functions on $X$, is studied for which $\Sigma$ is a $\sigma$-algebra of subsets of $X$. In particular, we study lifting of positive measures from $(X, \Sigma)$ to the Gelfand spectrum of this algebra and observe an unexpected shift in the support of measures. In the case that $\Sigma$ is the Borel algebra of a topology, we study the relation of the underlying topology of $X$ and the one of the Gelfand spectrum.

Summary

We haven't generated a summary for this paper yet.