Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
52 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Assessing Measures of Atrial Fibrillation Clustering via Stochastic Models of Episode Recurrence and Disease Progression (1510.00576v1)

Published 2 Oct 2015 in q-bio.TO and q-bio.PE

Abstract: Atrial fibrillation (AF) is a leading cause of morbidity and mortality. AF prevalence increases with age, which is attributed to pathophysiological changes that aid AF initiation and perpetuation. Current state-of-the-art models are only capable of simulating short periods of atrial activity at high spatial resolution, whilst the majority of clinical recordings are based on infrequent temporal datasets of limited spatial resolution. Being able to estimate disease progression informed by both modelling and clinical data would be of significant interest. In addition an analysis of the temporal distribution of recorded fibrillation episodes AF density can provide insights into recurrence patterns. We present an initial analysis of the AF density measure using a simplified idealised stochastic model of a binary time series representing AF episodes. The future aim of this work is to develop robust clinical measures of progression which will be tested on models that generate long-term synthetic data. These measures would then be of clinical interest in deciding treatment strategies.

Summary

We haven't generated a summary for this paper yet.