Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Floquet Theory for Second Order Linear Homogeneous Difference Equations (1510.00410v1)

Published 25 Sep 2015 in math.CA

Abstract: In this paper we provide a version of the Floquet's theorem to be applied to any second order difference equations with quasi-periodic coefficients. To do this we extend to second order linear difference equations with quasi-periodic coefficients, the known equivalence between the Chebyshev equations and the second order linear difference equations with constant coefficients. So, any second order linear difference equations with quasi-periodic coefficients is essentially equivalent to a Chebyshev equation, whose parameter only depends on the values of the quasi-periodic coefficients and can be determined by a non-linear recurrence. Moreover, we solve this recurrence and obtaining a closed expression for this parameter. As a by-product we also obtain a Floquet's type result; that is, the necessary and sufficient condition for the equation has quasi-periodic solutions.

Summary

We haven't generated a summary for this paper yet.