Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topology and Dynamics of the Contracting Boundary of Cocompact CAT(0) Spaces (1509.09314v3)

Published 30 Sep 2015 in math.GT and math.GR

Abstract: Let $X$ be a proper CAT(0) space and let $G$ be a cocompact group of isometries of $X$ which acts properly discontinuously. Charney and Sultan constructed a quasi-isometry invariant boundary for proper CAT(0) spaces which they called the contracting boundary. The contracting boundary imitates the Gromov boundary for $\delta$-hyperbolic spaces. We will make this comparison more precise by establishing some well known results for the Gromov boundary in the case of the contracting boundary. We show that the dynamics on the contracting boundary is very similar to that of a $\delta$-hyperbolic group. In particular the action of $G$ on $\partial_cX$ is minimal if $G$ is not virtually cyclic. We also establish a uniform convergence result that is similar to the $\pi$-convergence of Papasoglu and Swenson and as a consequence we obtain a new north-south dynamics result on the contracting boundary. We additionally investigate the topological properties of the contracting boundary and we find necessary and sufficient conditions for $G$ to be $\delta$-hyperbolic. We prove that if the contracting boundary is compact, locally compact or metrizable, then $G$ is $\delta$-hyperbolic.

Summary

We haven't generated a summary for this paper yet.