Papers
Topics
Authors
Recent
2000 character limit reached

Phase Retrieval Using Feasible Point Pursuit: Algorithms and Cramér-Rao Bound

Published 24 Sep 2015 in cs.IT, math.IT, math.NA, math.OC, math.ST, and stat.TH | (1509.08451v2)

Abstract: Reconstructing a signal from squared linear (rank-one quadratic) measurements is a challenging problem with important applications in optics and imaging, where it is known as phase retrieval. This paper proposes two new phase retrieval algorithms based on non-convex quadratically constrained quadratic programming (QCQP) formulations, and a recently proposed approximation technique dubbed feasible point pursuit (FPP). The first is designed for uniformly distributed bounded measurement errors, such as those arising from high-rate quantization (B-FPP). The second is designed for Gaussian measurement errors, using a least squares criterion (LS-FPP). Their performance is measured against state-of-the-art algorithms and the Cram\'er-Rao bound (CRB), which is also derived here. Simulations show that LS-FPP outperforms the state-of-art and operates close to the CRB. Compact CRB expressions, properties, and insights are obtained by explicitly computing the CRB in various special cases -- including when the signal of interest admits a sparse parametrization, using harmonic retrieval as an example.

Citations (34)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.