Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyper-Fisher Vectors for Action Recognition (1509.08439v1)

Published 28 Sep 2015 in cs.CV

Abstract: In this paper, a novel encoding scheme combining Fisher vector and bag-of-words encodings has been proposed for recognizing action in videos. The proposed Hyper-Fisher vector encoding is sum of local Fisher vectors which are computed based on the traditional Bag-of-Words (BoW) encoding. Thus, the proposed encoding is simple and yet an effective representation over the traditional Fisher Vector encoding. By extensive evaluation on challenging action recognition datasets, viz., Youtube, Olympic Sports, UCF50 and HMDB51, we show that the proposed Hyper-Fisher Vector encoding improves the recognition performance by around 2-3% compared to the improved Fisher Vector encoding. We also perform experiments to show that the performance of the Hyper-Fisher Vector is robust to the dictionary size of the BoW encoding.

Citations (2)

Summary

We haven't generated a summary for this paper yet.