Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some energy inequalities involving fractional GJMS operators (1509.08347v2)

Published 28 Sep 2015 in math.DG and math.AP

Abstract: Under a spectral assumption on the Laplacian of a Poincar\'e--Einstein manifold, we establish an energy inequality relating the energy of a fractional GJMS operator of order $2\gamma\in(0,2)$ or $2\gamma\in(2,4)$ and the energy of the weighted conformal Laplacian or weighted Paneitz operator, respectively. This spectral assumption is necessary and sufficient for such an inequality to hold. We prove the energy inequalities by introducing conformally covariant boundary operators associated to the weighted conformal Laplacian and weighted Paneitz operator which generalize the Robin operator. As an application, we establish a new sharp weighted Sobolev trace inequality on the upper hemisphere.

Summary

We haven't generated a summary for this paper yet.