Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Limits for Recovering a Hidden Community (1509.07859v2)

Published 25 Sep 2015 in stat.ML, cs.IT, and math.IT

Abstract: We study the problem of recovering a hidden community of cardinality $K$ from an $n \times n$ symmetric data matrix $A$, where for distinct indices $i,j$, $A_{ij} \sim P$ if $i, j$ both belong to the community and $A_{ij} \sim Q$ otherwise, for two known probability distributions $P$ and $Q$ depending on $n$. If $P={\rm Bern}(p)$ and $Q={\rm Bern}(q)$ with $p>q$, it reduces to the problem of finding a densely-connected $K$-subgraph planted in a large Erd\"os-R\'enyi graph; if $P=\mathcal{N}(\mu,1)$ and $Q=\mathcal{N}(0,1)$ with $\mu>0$, it corresponds to the problem of locating a $K \times K$ principal submatrix of elevated means in a large Gaussian random matrix. We focus on two types of asymptotic recovery guarantees as $n \to \infty$: (1) weak recovery: expected number of classification errors is $o(K)$; (2) exact recovery: probability of classifying all indices correctly converges to one. Under mild assumptions on $P$ and $Q$, and allowing the community size to scale sublinearly with $n$, we derive a set of sufficient conditions and a set of necessary conditions for recovery, which are asymptotically tight with sharp constants. The results hold in particular for the Gaussian case, and for the case of bounded log likelihood ratio, including the Bernoulli case whenever $\frac{p}{q}$ and $\frac{1-p}{1-q}$ are bounded away from zero and infinity. An important algorithmic implication is that, whenever exact recovery is information theoretically possible, any algorithm that provides weak recovery when the community size is concentrated near $K$ can be upgraded to achieve exact recovery in linear additional time by a simple voting procedure.

Citations (76)

Summary

We haven't generated a summary for this paper yet.