Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Periodicity in Time of Solutions of the KdV Equation (1509.07373v1)

Published 24 Sep 2015 in math.AP, math-ph, math.MP, and math.SP

Abstract: We study the Cauchy problem for the KdV equation $\partial_t u - 6 u \partial_x u + \partial_x3 u = 0$ with almost periodic initial data $u(x,0)=V(x)$. We consider initial data $V$, for which the associated Schr\"odinger operator is absolutely continuous and has a spectrum that is not too thin in a sense we specify, and show the existence, uniqueness, and almost periodicity in time of solutions. This establishes a conjecture of Percy Deift for this class of initial data. The result is shown to apply to all small analytic quasiperiodic initial data with Diophantine frequency vector.

Summary

We haven't generated a summary for this paper yet.